Toxicity and Physiological Actions of Carbonic Anhydrase Inhibitors to Aedes aegypti and Drosophila melanogaster
نویسندگان
چکیده
The physiological role of carbonic anhydrases in pH and ion regulation is crucial to insect survival. We examined the toxic and neurophysiological effects of five carbonic anhydrase inhibitors (CAIs) against Aedes aegypti. The 24 h larvicidal toxicities followed this rank order of potency: dichlorphenamide > methazolamide > acetazolamide = brinzolamide = dorzolamide. Larvicidal activity increased modestly in longer exposures, and affected larvae showed attenuated responses to probing without overt tremors, hyperexcitation, or convulsions. Acetazolamide and dichlorphenamide were toxic to adults when applied topically, but were of low potency and had an incomplete effect (<50% at 300 ng/mosquito) even after injection. Dichlorphenamide was also the most toxic compound when fed to adult mosquitoes, and they displayed loss of posture and occasionally prolonged fluttering of the wings. Co-exposure with 500 ng of the synergist piperonyl butoxide (PBO) increased the toxicity of dichlorphenamide ca. two-fold in feeding assays, indicating that low toxicity was not related to oxidative metabolism. Dichlorphenamide showed mild depolarizing and nerve discharge actions on insect neuromuscular and central nervous systems, respectively. These effects were increased in low buffer salines, indicating they were apparently related to loss of pH control in these tissues. Overall, sulfonamides displayed weak insecticidal properties on Aedes aegypti and are weak lead compounds.
منابع مشابه
Carbonic anhydrase in the midgut of larval Aedes aegypti: cloning, localization and inhibition.
The larval mosquito midgut exhibits one of the highest pH values known in a biological system. While the pH inside the posterior midgut and gastric caeca ranges between 7.0 and 8.0, the pH inside the anterior midgut is close to 11.0. Alkalization is likely to involve bicarbonate/carbonate ions. These ions are produced in vivo by the enzymatic action of carbonic anhydrase. The purpose of this st...
متن کاملCharacterization of Carbonic Anhydrase 9 in the Alimentary Canal of Aedes aegypti and Its Relationship to Homologous Mosquito Carbonic Anhydrases
In the mosquito midgut, luminal pH regulation and cellular ion transport processes are important for the digestion of food and maintenance of cellular homeostasis. pH regulation in the mosquito gut is affected by the vectorial movement of the principal ions including bicarbonate/carbonate and protons. As in all metazoans, mosquitoes employ the product of aerobic metabolism carbon dioxide in its...
متن کاملQuantitative Structure - Activity Relationships Study of Carbonic Anhydrase Inhibitors Using Logistic Regression Model
Binary Logistic Regression (BLR) has been developed as non-linear models to establish quantitative structure- activity relationships (QSAR) between structural descriptors and biochemical activity of carbonic anhydrase inhibitors. Using a training set consisted of 21 compounds with known ki values, the model was trained and tested to solve two-class problems as active or inactive on the basi...
متن کاملCarbonic anhydrase in the adult mosquito midgut.
We have previously demonstrated the involvement of carbonic anhydrase (CA) in larval mosquito midgut physiology. In this study, we used Hansson's histochemistry to examine the distribution of the enzyme in the midgut of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, Culex nigripalpus, Ochlerotatus taeniorhynchus, Anopheles albimanus and Anopheles quadrimaculatus adult mosquitoes. Addi...
متن کاملAconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster
Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system. Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2016